Diphenhydramine transport by pH-dependent tertiary amine transport system in Caco-2 cells.

نویسندگان

  • H Mizuuchi
  • T Katsura
  • K Ashida
  • Y Hashimoto
  • K Inui
چکیده

Substrate specificity and pH dependence of the transport system for diphenhydramine were investigated in Caco-2 cell monolayers. Diphenhydramine uptake was not affected by any typical substrate for the renal organic cation transport system except procainamide. Along with procainamide, tertiary amine compounds with N-dimethyl or N-diethyl moieties in their structures inhibited the diphenhydramine uptake. Moreover, accumulation of diphenhydramine was stimulated by preloading the Caco-2 cells with these tertiary amines (trans-stimulation effect), indicating the existence of the specific transport system for tertiary amines with N-dimethyl or N-diethyl moieties. Efflux of diphenhydramine from monolayers was enhanced by medium acidification. In addition, intracellular acidification resulted in marked stimulation of diphenhydramine accumulation. ATP depletion of the cells caused an enhancement of diphenhydramine accumulation, suggesting the involvement of an active secretory pathway. However, P-glycoprotein did not mediate the diphenhydramine transport. These findings indicate that a novel pH-dependent tertiary amine transport system that recognizes N-dimethyl or N-diethyl moieties is involved in diphenhydramine transport in Caco-2 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport of procainamide via H(+)/tertiary amine antiport system in rabbit intestinal brush-border membrane.

Transport characteristics of procainamide in the brush-border membrane isolated from rabbit small intestine were studied by a rapid-filtration technique. Procainamide uptake by brush-border membrane vesicles was stimulated by an outward H(+) gradient (pH(in) = 6.0, pH(out) = 7.5) against a concentration gradient (overshoot phenomenon), and this stimulation was reduced when the H(+) gradient was...

متن کامل

Biol. Pharm. Bull. 29(3) 522—526 (2006)

ization with a pKa value of pH 8.8, is classified as a type IA antiarrhythmic drug, and has been used for the management of ventricular arrhythmias. The drug is absorbed rapidly and almost entirely after oral administration, and is detected in the plasma within 15 min. Quinidine binds to both albumin and a1-acid glycoprotein, and the proportion that binds to plasma protein is 70 to 95%. However...

متن کامل

pH-Dependent passive and active transport of acidic drugs across Caco-2 cell monolayers.

The aim of this study was to investigate pH-dependent passive and active transport of acidic drugs across Caco-2 cells. Therefore, the bidirectional pH-dependent transport of two acidic drugs, indomethacin and salicylic acid, across Caco-2 cells was studied in the physiological pH range of the gastrointestinal tract. The transport of both drugs decreased with increased pH, as expected from the ...

متن کامل

In-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model

The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...

متن کامل

In-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model

The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 278 4  شماره 

صفحات  -

تاریخ انتشار 2000